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ISUMMARY

I Several statistical problems important to submarine ASW

exercise design and analysis were investigated under the

research contract for updating the current SUBMARINE ANALYSIS

NOTEBOOK. The application (but not the development and

theory) of the research will be contained in the revised

edition of the Notebook.

I The underlying theory of certain results of this research

needs to be published separately, since it contains new

jtechniques developed under this contract or includes the
modification and/or application of methodologies not avail-

able in standard textbooks. This paper contains this theory.

The results discussed herein include:

A method for calculating symmetric confidence inter-Ivals for search rate and mean time-to-detection for
the active and passive area search missions.

0 A method for calculating approximate confidence inter-
vals on cumulative detection probability as a function
of range for the general case containing "turn-arounds"
(CPAs) and "late-starters."

The application (and modification) of various techniques
for calculating approximate confidence intervals on
Mission Measures of Effectiveness that are in the form
of products of proportions.

A discussion of the potential bias due to "late-starters"
in the development of cumulative detection probability
as a function of range. Recommendations for eliminating
(or at least minimizing) this bias are included in this
report.
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I. INTRODUCTION

Analysis & Technology, Inc. has been conducting a

research study on statistical methods for the design and

testing of submarine exercise data. This research has

been sponsored by NAVAL ANALYSIS PROGRAMS (Code 462) of the

OFFICE OF NAVAL RESEARCH under Contract Number N00014-72-C-0238.

The purpose of this study is to provide a basis for

Iimprovement in the design, analysis, and evaluation of
submarine exercises and the exercise results through the

I development and application of statistical techniques.

The results of this study are to be included in a revised

j edition of the SUBMARINE ANALYSIS NOTEBOOK (reference (1)).

The notebook will contain instructions, procedures,

I standardized tests, and analytical techniques to evaluate

in advance the data plans and requirements for proposed

submarine exercises, and a description of the post-exercise

statistical testing and general analysis necessary for the

evaluation of the recorded data.i
Although the SUBMARINE ANALYSIS NOTEBOOK will be the

j final product of this research and will utilize all of the

results of this study, it is intended to be a convenient

j user's guide and not a compendium of statistics. Its

purpose is to provide sufficient theory to allow the user

f to employ the statistical techniques correctly and to

understand the implications of the tests. Therefore,

certain theory and rationale behind the various statistical

I
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jtests will not be included in the Notebook. Instead,

the user is referred to the appropriate textbook(s) and

published papers for a detailed explanation of the

theory.

I Certain results of the research conducted under this

contract merit separate publication since they require

f new or non-standard techniques. These results are pre-

sented in this methodology paper. The treatment of the

Itechniques discussed herein is analytical rather than
computational.I

Chapter II of this report presents a method for

calculating confidence intervals for search rate and

mean time-to-detection for the active and passive area

search scenarios. This method has application in both

the design phase of an exercise and in the post-exorcise

analysis phase. In the planning stages, the test designer

can use it to estimate sample size requirements for a

desired confidence interval around the sample measure,

or conversely, he can estimate the confidence interval

he can expect to obtain from a predetermined sample

jsize. In the post-exercise analysis phase, the analyst
Ican apply the technique to calculate exact confidence

intervals around the sample measure. of search rate and

mean time-to-detection.

In Chapter III, a methodology is given for obtaining

approximate confidence intervals on cumulative detection

probability (CDP) as a function of raiige. Consider-

able research was devoted to this problem before a

2



sinple, practical method could be developed. The com-

plexity of the problem is due to the inclusion'of "turn-

arounds" or CPAs and "late starters" in the construction

of the estimate of th3 CDP curve.

Chapter IV discusses various methods of establishing

approximate confidence intervals on products of proportions

with respect to their usefulness in ASW applications.

The method due to Madansky (reference (2)) is recommended

Ifor inclusion in the SUBMARINE ANALYSIS NOTEBOOK since
it appears to be most applicable to the type of exercise

jdata used for obtaining estimates of Measures of Effective-
ness (MOEs) for submarine missions.

The research conducted on cumulative detection prob-

Jability (CDP) as a function of range revealed that
the standard estimate of this function is susceptible to

bias under certain conditions. The results of an in-

I vestigation of this potential bias are presented in

Chapter V.

I3
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II. SYMMETRIC CONFIDENCE INTERVALS FOR SEARCH RATE AND MEAN
TIME-TO-DETECTION FOR THE ACTIVE AND PASSIVE AREA
SEARCH SCENARIOS

Discussion

A primary measure of interest for the area search

mission is search rate as calculated from exercise data.
%earch rate is defined as the rate at which the ASW

unit searches its area, expressed in area per unit time

(for example, square nautical miles per hour). A

related measure is mean time-to-detection, which is

inversely proportional to search rate. These measures

are applicable to both active and passive area search

scenarios and are discussed in detail in the current

SUBMARINE ANALYSIS NOTEBOOK (reference (1)).

In planning an area search exercise, the test designer

needs to investigate sample size requirements for obtain-

ing statistically valid estimates of search rate and

mean time-to-detection. This is true whether or not he

has control over the sample si~e. If he does have control,

then he can decide how many runs to schedule in =order to

4obtain a desired confidence interval around the exercise
estimates of these measures. If he does not have control

fover the sample size (i.e., the sample size has been

fixed prior to the design of the exercise), then he can

f estimate, before the exercise, the anticipated confidence

interval around the sample estimates of search rate and

mean time-to-detection. In either case, the designer has

a tool for assessing the statistical validity of the

exercise results, prior to the conduct of the exercise.

T



After the exercise, when the data are used to calculate

estimates of search rate and mean time-to-detection, the

exercise analyst can calculate confidence intervals around

his estimates, as a guide to their probable accuracy.

A method for determining exact symmetric confidence

intervals on these measures has been derived from Koopman's

(reference (3)) formulation of the area search problem,

and is presented in this chapter.

The technique provides a functional relationship

between confidence level, the width of the confidence

interval as a percent of the sample estimate of the

measures (search rate or mean time-to-detection), and

the number of detections. It is the tool the analyst

needs to make the pre-exercise decisions and to do the

post-exercise analysis.

Since sample size is expressed in terms of detections

and not in terms of exercise runs, the techniqae may

require some prediction in the Fre-exercise phase. Unless

the test designer is able to spicify that a test continue

until a required number of deteztions has occurred, he

needs a predicted value of search rate or mean time-to-

detection in order to convert the required number of

detections to the required number of runs.

I
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Development of Confidence Intervals for Search Rate

The cumulative detection probability as a function of

time for a submarine conducting an area search is presented

in the SUBMARINE ANALYSIS NOTEBOOK (reference (1)) as:

CDP = 1 - exp (-At) (11.1)

where:

1 D
- N
t , ti

i=l1

1

t sample mean time-to-detection (t =

D = number of targets detected by the searcher,

t. = the length of the ith time interval of target

exposure, ordered so that ti > ti I ,

N = total number of time intervals. t..

Further, the quantity search rate (SR) is defined as:

SR A AX (area per unit time) (TI.2)N
Z t i  

t
i=l

where:

A = size of the search area in square nautical

miles.



f The quantity t needs to be rewritten in a form which

is consistent with the usual definition of a mean; i.e.,

M

1 (Xi).

Referring to Dr. B. 0. Koopman's Search and Screening

(reference (3)), the probability Xdt of detecting in a
short time interval of length dt is independent of time;

in fact, the probability of a detection occurring in any

short time interval of length dt is constant. Thus, it

is possible to add a length of time in which no detections

occurred to any other time interval, and especially to a

time inter-il which ended in a detection.

For example, let us consider an area search exercise

which produced the following data. The D* stand for

detections and the ND stand for no detections,

i=l D*

2 D*

3 -ND

4 ND

5 D*

6 ND

7 D*

8 D*

0 2l4 6 1O 12
Time (hours)



where: t = 6 hours, t4 = 2 hours, t7 = 4 hours,

t2 = 2.5 hours, t5 = 10.5 hours, t8 = 6 hours,

t3 = 8 hours, t6 = 12 hours, D = 5.

Runs number 1, 2, 5, 7, and 8 ended in detection, while the

remaining three runs ended before the target was detected.

In this case, the mean time-to-detection (t) can be calcu-

lated using equation (II.1),

E ti  8 t. = 10.2.

D i=l i=l

However, since the probability of detection in a small

time interval is constant, the data may be regrouped so

that every time interval ends in a detection. A possible

rearrangement of the data in this example Ls presented

below:

j=l i=l D

2 2+3 D
3 4 5 D

4 6+7 D

5 8 D

0 2 4 6 8 i0 12 14 16

Time (hours)

where: t* = 6 hours,
= 10.5 hours,

t* = 12.5 hours,

3

t* = 16 hours,

t* = 6 hours.
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Assume that t*, t*,...t* form a random sample from a1 2 D
population whose probability density function is

fit) = X* e - X t , 0 < t < O (11.3)

with the cumulative distribution function

F(t) = l-e - t, 0 < t <. (II.4)

This follows from the premise that X* is assumed to be

unknown, X* > 0, and is to be estimated by X = it.

Define the random variable

X = 2X*t*. (11.5)

Clearly, t* = X/2X*, dt*/dX 1/2A* and by the usual change

of variable technique (reference (4)), the probability

density function of X is

g(X) = (1/2)e(-/2)X, 0 < X < o, (11.6)

the chi-square density function with 2 degrees of freedom.
The values X= 2X*t" (i = 1,... ,D) form a random sample

1

from this chi-square density function. Thus, by the
D

reproductive property of the chi-square, Z Xi = EXi =
i=l

2X*Zt is distributed as a chi-square random variableI
with 2D degrees of freedom. Let X2 (2D) and X2

1 _ (2D) be

respectively [100 a] and [100 (1-0)] percentage points of

the chi-square with 2D degrees of freedom. We have

9



P(X2(2D) <_ X < XI_8 (2D)) = l-(a+O) = y. (11.7)

But ~X = 2X*Zt.. Hence
1 1

P(X (2D) < 2A*t < X2_ 0 (2D)) = y-(c+0) = T (11.8)

or equivalently

P(X2(2D)/2Zt < X* < X2_ (2D)/2Yt)= cCf) y. (11.9)

The endpoints of the interval in equation (11.9) give a

confidence interval on X* with confidence coefficient y.

Continuing, we can use the well known results

N D
SR* = AX* and SR = DA/Et. = DA/Yt* (II.10)

~1' 1 1

where SR* = true (but unknown) search rate and SR denotes

the sample estimate of the search rate. Substituting into

(I1.9) we have

_SRX_(2D) SRx2_B (2D)\

P 2D < SR* < 2D a = i-(a+ ) = Y, (II.11)

yielding a y = [(l-(a+O)) 100%] confidence interval on

SR*. The formulas

SR< 2(2D) SRX _ (2D)
L = 2D and U1 _0  2D (11.12)

10-!



yield asymmetrical confidence intervals (about SR*) if

a = 0. However, there is nothing inherently desirable

about asymmetrical confidence limits. In fact, in pre-

exercise design (i.e., determination of sample sizes or

number of detections) symmetrical intervals are more

desirable. Furthermore, in some cases the width of the

asymmetric intervals are wider than the corresponding

symmetrical ones. To obtain the symmetrical confidence

intervals, find a and 0 such that

SR (2D)2D - (I-A) SR = SR-A(SR) (11.13)

and

SRX, (2D)
2D = (1 + A) SR = SR + A(SR), (11.14)

where A is the percent accuracy, 0 < A < 1.1
That is

Xt(2D) = 2D(l-A) (11.15)

and

X 2_ (2D) 2D(l+A). (11.16)

I
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Figure II.1, appearing at the end of this chapter,

presents curves giving the relationship between the

number of detections (D) and the percent accuracy of

the sample search rate (A), for four confidence levels (y);

namely y = 80%, 90%, 95% and 99%. The application of

these curves is illustrated in the examples presented

in the last section of this chapter.

Development of Confidence Intervals for Mean Time-to-Detection

The above techniques can be adjusted to yield confidence

intervals on l/X*, the "true" but unknown mean time-to-

detection. From (11.9) we have

p 2Dt < 1 < 2Drl1(a+$) (11.17)

N D
where t = t./D = E t /D. Thus

i=l 1 i=l'

= 2Dt/X_4 (2D) (11.18)

and

U = 2Dt/X2(2D) (11.19)

I
yield asymmetrical confidence intervals on l/X*. To

obtain symmetrical confidence intervals on i/X*, set L =

(l-A)t and U = (l+A)t. Solving these equations, we have

t i12



X2_ (2D). = 2D/ (1-A), (11.20)

X 2(2D) = 2D/(1+A). (11.21)

Again, by fixing D, one can adjust A, a and 8, subject to

y = [l-(a+O)] = 99% (or 95%, 90%, 80%), until equations

(11.20) and (11.21) are satisfied.

IFigure 11.2 contains graphs giving the.relationship
between the number of detections (D), and the percent

faccuracy of the sample mean time-to-detection (A), for

four values of y = [l-(a+3)], namely y = 80%, 90%, 95%

j and 99%.

Application

The following examples illustrate the use of Figures

II.1 and 11.2 in pre and post-exercise analysis.

jExample 1 - (Pre-Exercise)

An active area search exercise is being designed

Ito measure active search rate. The test designer

wishes to estimate the number of detections needed

jto be 90% confident that a +20% interval around the

sample search rate contains the true, but unknown,

value of search rate.

In this case, the designer will not attempt

jto predict the value of the sample search rate since

the effects of target forestalling (i.e., target

1
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counterdetecting first and then avoiding detection)

may be significant. However, his estimate of the

required sample size must be in terms of detections

and not in terms of exercise runs.

For this problem, the following values of

confidence level and percent accuracy are used:

Confidence Level = 90%

Percent Accuracy = 20%

Confidence Limit = SR +.2SR

Using Figure II.1, the required number of

detections is 65.

Example 2 - (Pre-Exercise)

In designing a passive area search exercise,

the test designer learns that the proposed exercise

will consist of 60 runs, each 24 hours long. He

wishes to estimate the confidence intervals around

the sample mean time-to-detection, prior to the

conduct of the exercise.

From prediction and/or prior passive area

search exercises, the test designer estimates that

the cumulative detection pro~ibility at the end

of each run is .87. Thus, the estimated number of

detections at the end of 60 runs is approximately

52 (i.e., .87 x 60).

jThe predicted, pre-exercise value of mean time-

to-detection is approximately 28 hours (t total

5search time/D _ 27.69).

14
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Using Figure 11.2, he obtains the followin

estimates of three confidence intervals around

the sample mean time-to-detection based on D = 52

and t 27.69:

Confidence Interval
Confidence Level Percent Accuracy A (t-At, t+At)

80% .18 (22.71, 32.67)

90% .23 (21.40, 33.98)

95% .28 (19.94, 35.44)

Example 3 - (Post-Exercise)

The analyst wishes to compute 80%, 90%, 9E% and

99% confidence intervals around the exercise (sample)

value of search rate. The sample search rate was

calculated to be 23 square nautical miles per day

based on 45 detections.

Using Figure I.1, he obtains the following values

of the exact symmetric confidence intervals around

the exercise search rate.

Confidence Interval

Confidence Level Percent Accuracy,A (SR-ASR, SR+ASR)

80% .19 (18.63, 27.37)

90% .24 (17.48, 28.52

95% .29 (16.33, 29.67)

} 99% .38 (14.26, 31.74)

15
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Figure 11.1 Relationship between number of detections,
D, and percent accuracy, A, for 80%, 90%,
95% and 99% confidence intervals on true
search rate, SR*. For D detections, the

f limits of the interval are SR + ASR, where
SR sample search rate.
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Figure 11.2 R,'.zationship between number of detections-,
D, and percent accuracy, A, for 80%, 90%
95'a and 99% confidence intervals on true
mean tilne-to-detect.on, l/X*. For DI detections the limits of the interval areE + At-, where t=sample mean time-to-
detection.
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III. APPROXIMATE CONFIDENCE INTERVALS FOR CUMULATIVE
DETECTION PROBABILITY CURVES

Discussion

Cumulative detection probability as a function of

range (CDP = f(R)) is an important performance measure

of a sonar system. As developed from exercise data, it

provides the analyst with an estimate of the system's

detection performance in terms of the probability of

detecting a target by the time the target has closed to

within a specified range.

The development of CDP = f(R) is simple if each

target closed until it was detected or until it reached

(approximately) zero range from the detecting unit. In

this case, when N trials have been made, the cumulative

detection probability as a function of range can be

determined as:

DR
CDP(R) = DR

where:

DR = Number of detections made at range R

or greater.

However, in actual exercises, the target does not

continue to close indefinitely until it is detected.

Even if it were required to do so, the resultant CDP

18
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curve would not be representative of real targets that

are free to maneuver. Thus, a realistic target may reach

a closest point of approach (CPA) after which it begins

opening range. In many cases, such a target may never

be detected during the run; and further, the observed

CPA of a run may be at a lesser range than several of

the detection ranges of other runs. These undetected

targets are called CPAs or turn-arounds.

In addition, a typical exercise may include targets

that were "late-starters". These late-starters became

detection opportunities at a lesser range than some or

many of the detection ranges of other targets.

A detailed discussion of the development of cumulative

detection probability as a function of range for the

general case involving CPAs and late-starters is presented

in the current SUBMARINE ANALYSIS N"TEBOOK (reference (1)).

While several forms of the CDP equation are presented in

the Notebook, the follcwing equation is the most useful

for our development of confidence intervals:

iCDP4 = 1 - I~
CDP, g1

j~l

where:

CDPi = The cumulative detection probability

at range i.

gj = The probability of no-detection in the
th

J range band, on a target which was

not detected before entering the jth

range band.

I



Methodology

Several techniqueq (e.g., references (5) and (6)) have

been proposed in attempts to solve, ac least approximately,

the problem of obtaining confidence intervals on cumulative

detecion probability (CDP) as a function of range. In the

simple case with no CPAs or late-starters, confidence limits

can be calculated using standard techniques since the function

DR
CDP (R) N

is, at each range, an observation on a binomial population.

Specifically, there is a probability (equal to CDP(R)) that

a closing target will be detected at a range greater than

or equal to R. The observed fraction represents DR successes

in N trials.

In contrast, consider the more complicated case where

CPAs and late-starters are included in the data. Suppose

a detection occurs at some range R* that is less than

the longest detection range, and less than at least one

CPA range or late-starter starting range. It is not

possible to characterize CDP(R*) as D successes in N

trials since not all the runs that were valid trials at

the starting range are still valid trials at R* (due to

CPA's), and not all the runs that are valid trials at

R* have been valid trials over the entire interval from

the starting range to R* (due to late-starters). In

short, although it is still possible to count the

successes, it is no longer possible to count the number

of trials; and hence, the binomial confidence interval

technique is not directly applicable.

20



The method described here is designed to choose a

suitable number to use as this unknown number o! trials

so that approximate confidence limits can be calculated

using the binomial distribution. The choice is made in

such a way that the resulting confidence intervals re-

flect, in a reasonable way, the actual sample size.

Consider the following notation:

1. Ri = range of an i th detection, ordered so that
R.+ 1 :S Ri <I Ri_l -

2. mi = numb:er of targets available at a range just

less than range Ri -

As referred to in the Discussion, the equation for CDP

given in the SUBMARINE ANALYSIS NOTEBOOK (reference (1))

is:

i
CDPi = 1 - R

j=l gj

Since the estimator for each gj can be written in the
M. 3J

form gj = M + the CDP i can be rewritten in the notation

of this report.

i M.
3. CDP. = 1 - R +1 cumulative detection probabilityl j=l Mj+l.

at range Ri -

21



4. N estimated sample size necessary for produc-

4. Ni CDP.
I

ing i detections when the cumulative detection prob-

ability is CDP i.

5. Rt = an arbitrary range satisfying Ri < Rt < R.
I1~ 1 i

6. A = number of "late-starters" with starting range
I

less than R. but greater than or equal to Rt.
1 1

7. C. = number of "turn arounds" where the closest point1

of approach (CPA) is less than R. but greater than or

equal to Ri .
I

8. k = C - A: = net loss in number of targets
1 1 1
(opportunities) between range Ri and R*.

9. [N.] = largest integer less than or equal to

N. = i/CDP.
1 1*

Given a sample size Ni and a value of CDPi for a

range Ri f we could calculate the expected number of

detections at or before Ri by using the follo.:ing equation:

i = CDPi . N.

In this case, since i and CDPi are known, we can use the

same equation to estimate the "effective sample size"

N.
i - CDPi

22
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There are two cases which arise in placing confidence

intervals on the value of CDPi at range R. In case 1,

Ni is an integer. Here CDP i = i/Ni can be treated as i

detections, at ranges greater than or equal to Ri , out

of Ni (estimated) opportunities. Hence, using the

tables and charts for "exact" confidence intervals on

a single proportion (see, for example, reference (1))

one can obtain an approximate y% confidence interval on

CDPi, where Li and Ui denote, respectively, the lower

and upper limits of the interval.

In case 2, Ni is not an integer. Here

i/([N i ] + 1) < CDP i < i/[Ni].I l

Using the tables and charts for confidence intervals on

a single proportion, we can obtain an approximate, but

probably conservative, y% confidence interval on CDP i.

For the lower limit, Li , take the lower limit of a y%

confidence interval on the proportion i/([N] + 1), i.e.,

treat CDP. as 3 detections out of [Ni] + 1 opportunities.

For the upper limit, Ui , take the upper limit of a y%

confidence interval on the proportion i/[N i] , i.e., treat
CDP. as i detections out of [N.] opportunities.

1 .1-

The above technique provides confidence intervals on

CDP at those ranges where detections occurred. Consider

range R* where R R* < R., and recall that thei Ri+l <

estimated CDP for range R* is still CDPi. First, consider
1

the case where A* > C (i.e., the number of late-starters

is greater than or equal to the number of turn arounds in

23
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the interval from R. to R ). For this case, no change is
1 I

recommended in the confidence interval on CDP. As Rt moves
1

from Ri to Ri +1, there will be no change in the limits of

the confidence interval so long as A*> C!.

Secondly, consider the case where A! < Ci (the turn-

arounds since the last detection outnumber the late-

starters since the last detection). Intuitively, there is

a drop in the precision of our estimate of CDP at range

R*. This drop in the precision should be expressed by

calculating a wider confidence interval on CDPi at range

R . Further, it should be done in such a way that the1

upper limit of the interval goes to I00% if the number
of opportunities, Mi - (C - At), goes to zero. Since

CDP is a monotonically decreasing function of range, we

can still use Li as the lower limit on CDPi at range Ri.

As an intermediate step in the adjustment of the

upper limit, compute an estimate of CDP, say CDPi, as

if the ith detection occurred at range R*

We obtain

f. i+ I(I .2
CDP 1-Mj + M _ 1 -r

where k = - A . The estimated number of opportunities

producing this value of CDP in i detections is N! = i/CDP!.

Of course our estimate of CDP at range Ri continues to be

24



CDPi, but for a (conservative) upper limit we take the

upper limit of a y% confidence interval as if we have had

i detections out of [NI] opportunities. Note that if

0 = M., then there are no targets available at range R1 11
and CDP _ = 1. Hence, the upper limit on CDP i at range

Ri0 will be 1. This technique also guarantees that the

upper limits of the confidence intervals will converge

to 1 as the range goes to 0.

Using the above technique, it may happen that the

upper limits of the intervals are not a monotonically

decreasing function of range. See Figure III.l for a

sketch of an artificial example.

"S

CDP \f" M-*__,__ Locus of upperI limits.

Locus of lower - ' " \

limits.

0-
R

Figure III.1 A Situation Where the Locus of the Upper
Limits of the Confidence Intervals on
CDP is not a Monotonic Function of Range
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I Non-monotonic changes in the upper limits are possible

if large numbers of late-starters are introduced to a

j relatively small number of opportunities. One may make

the locus of the upper limits monotonically decreasing as

the range increases. This adjustment is indicated by

the symbols "-*-*-*-" in Figure III.1 This appears to

be a reasonable adjustment of the upper limits since the

"true" CDP is a m-notonically decreasing function of

range.

The data for the numerical example (fictitious) appear-

/ ing in Table III.1 is taken from the current SUBMARINE

ANALYSIS NOTEBOOK (reference (1)). Approximate 80%

j confidence limits on the CDP curve have been calculated

and are included in the table. Note that because of

the small number of opportunities and detections, the

intervals are quite wide. The results are presented

graphically in Figure 111.2.

2
I
I
I
J

I
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i

jIV. CONFIDENCE INTERVALS FOR PRODUCTS OF PROPORTIONS

£Discussion

It is well known that several Measures of Effectiveness

(MOEs) useful in the analysis of Anti-Submarine Warfare

exercises can be written in the form

N
MOE = PlP2 .. N = ff Pi (IV.l)
O = 2.i=l

where pi is the probability of success of the ith component

of a system, given that the first (i-l) components have

succeeded. In statistical terms, the MOE is a measure of

the reliability of a series system (i.e., a system in

which every component must succeed in order for the system

to succeed) and is the probability that the system will

succeed on a given "trial".

In this chapter, the problem of obtaining (approximate)

confidence intervals on MOEs is considered. A brief

description of techniques due to Harris (reference (7)),

Madansky (reference (2)) and Walsh (reference (8)) is

given, with a discussion of the conditions under which

each is applicable. In addition, an in-depth review of

a modified Bayesian technique is presented, along with

some of the problems associatei with its use. Tables are

given comparing the various techniques under different

conditions.
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Based on the comparative analysis, the method due

to Madansky is recommended for inclusion in the updated

SUBMARINE ANALYSIS NOTEBOOK. It appears to be most

applicable to the type of exercise data used for obtain-

j |ing estimates of Measures of Effectiveness for submarine

missions.

Theory

Assume XI....,XN are statistically independent random

variables and for each i, Xi has a binomial distribution
with parameters n and pi. As usual, X. will be the

number of "successes" out of ni "trials" where the true,

but unknown, probability of success on any trial is pi.

Harris gives a brief review of prior work in this
area and extends a general technique developed by Buehler

(reference (9)) for obtaining approximate confidence

intervals whenever each Xi, i=l,...,N, is approximately

Poisson distributed, (i.e., roughly ni > 40 with pi < 5/ni).

Thus, pi must be "small" which restricts the use of the

technique even in the case of "large" samples.$ A

Walsh succeeded in deriving a function of pi =i/ni'

i = 1,...N which can be "inverted" to obtain an approximate
N

confidence interval on R p.. The function is approximately
i=l

normally distributed whenever the numbers of trials, n 's,

are moderately large and the success probabilities, pi's,

are of at least moderate size (i.e., roughly, pi > 1/2,

nipi L 10, and ni (1-pi) > 5; or pi . 2/3, nip i L 10, and

ni(1-pi) > 2). As before, the restrictions on pi limit

the use of the procedure.
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Madansky derives approximate confidence intervals on

R pi by "inverting" the generalized likelihood ratio
i=l
test and using the well known asymptotic Chi-square random

variable. The technique gives good results whenever the

Sni's are "large" and the pi's are not close to zero (i.e.,

roughly, ni > 30 with pi > 5/ni).

The above are "relatively large sample" techniques.

4 Furthermore, each has restrictions on pi, i=l,...,N. In

the case when these restrictions are not met there are

no procedures, known to the authorsi, for obtaining
N

confidence intervals on MOE = p..
i=l

In an attempt to provide guidance in all cases, an

Iinvestigation was made into the Bayesian confidence
intervals suggested by Springer and Thompson (reference (10)).

Under the assumption that pi, i=l,...,N has a uniform prior

distribution on the interval from zero to one, they derived

the Bayes posterior distribution of the MOE, conditional

on the observed values Pi = Xi/ni. The appropriate per-

centage points of the posterior distributinn form the limits

Jof the Bayesian confidence interval on the MOE. Unfortu-

nately, the Bayesian procedure has two undesirable features.

First, the mean of the posterior distribution is

A N Xi+l
= . +2 (IV. 2)i=1 ni.

I Equation (IV.2) is a biased estimate of the MOE. As the

authors point out, the estimate is unbiased if the ni all

tend to infinity. However, for moderate sample sizes, ni ,
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jthe bias can be serious if N is large and pi is close to

1. See Table IV.l for some simple numerical examples.

Table IV.l

Correct Estimate Bayesian Estimate (Biased)

N N
11 (Xi/n i ) II (Xi+l)/(ni+2)

i=l i=l

I
5 19 5 20

9 = .7738 1 (2) = .6209Si=l i=:l

10 19 9 20
Ti58 I -3855

i=l 
i=l

15 15

15 19 -: .4633 1 20 .2394

i=l i= 2

A second problem with the Bayesian limits is that for

small sample sizes (n.'s) they are too narrow in at least

one case. Namely, when there is only one term in the

product, i.e., the MOE is a single proportion. For this

case, "exact" confidence intervals can be given as in
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Table IV.2. Comparison of the Bayesian limits and the
f"exact" limits on a single proportion lead us to modifyI\
the Bayesian technique.

I

I Table IV.2 80% Confidence Interval on a Single Proportion
When the Sample Size =,5

Number of Proportion of Bayesian Eyact Confidence
Successes Successes Limits Limits

X Lower Upper Lower Upper

0 0.0- .019 .177 10.00 .275

1 .2 .098 .495 .021 .584

2 .4 .209 .656 .112 .753

3 .6 .343 .790 .247 .888

4 .8 .496 .902 .416 .979
I

5 1.0 .822 .981 .725 1.000

I ... ..

In the Bayesian spirit, assume that for each i, pi is

a random variable. Given pi = Xi/ni, the limits (L., 'i)
of an exact 1-a confidence interval on pi are known (see,

I for example, reference (11)) to satisfy

BETA(Li; Xi,ni-Xi+l) = /(IV.3)
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I

and

BETA (Ui ; Xi+l, ni-x i ) = 1-a/2 (IV. 4)

respectively. The function

BETA(z; A, B) = rJ(A +B )  tA- (1-t) B-dt

0

= ~;A,, B)dt (IV. 5)

if o
0

I

is the cumulative form of the beta distribution. Given
A

Pi = Xi/ni with O<Xi<ni, define the "interval generating
function" of pi to be

BETA(pi;Xini-Xi+l) if O<BETA(p.;Xi ni-Xi+l)<.5

Fi (pi;Xini) = BETA(pi;Xi+l,ni-Xi) if 1>BETA(pi;Xi+ln i-Xi )>.5

.5 if

(IV. 6)

where pi and pi satisfy BETA(pi;Xi,ni-Xi+l) = .5 and BETA

(pi;Xi+l,ni-Xi) = .5 respectively.
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A sketch of the graph of F(p;3,5) appears in Figure IV.l.

When p = 3/5, confidence intervals for p may be read directly

from the graph. For example, with F(p;3,5) = .05 and .95

we obtain p = .189 and .924 respectively. The interval

(.189, .924) is a 90% confidence interval on p.

If X. = 0, define

Fi(pi;0,ni) = BETA(pi;l,ni); O<pi<l. (IV.7)

If Xi = ni , define!1

Fi(pi;ni,n) = BETA(pi;ni,l); O<pi<l. (IV.8)

Sketches of the graphs of F(p;0,5) and F(p;5,5) appear

I in Figure IV.2. In the case Xi = 0 the lower limit, Li . of

the (1-a) confidence interval on pi is 0 and the upper limit

satisfies F (Ui;0,n i ) = 1-a. For example, from Figure IV.2

we see that a 90% confidence interval on p when X = 0,

n = 5 is (C, .369). Similarly, if Xi = ni, then the upper

limit, Ui is taken to be 1 and the lower limit, Li , satisfies

SFi(pi;ni.ni) = a. From Figure IV.2, a 90% confidence inter-

val on p is (.631, 1) when X = 5, n = 5.

By this time it is obvious that we are requirirng the

percentage points of the interval generating function,

Fi(pi;Xi,ni), to be the limits of an exact confidence inter-

val on p.
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Also, the function Fi(pi;Xi,ni) satisfies necessary and
sufficient conditions (see, for 3xample reference (12)) to

oe a cumulative probability distribution function. This

motivates the following definition:

Definition 4.1. Conditional on the observed value

Pi = Xi/ni, the modified BayesianI"posterior" cumulative probability
distribution of pi is given by

I Fi(pi;Xi,ni ) for i = 1,2,...,N.

We desire the posterior cumulative probability dis-
N N ^

tribution %cpd) of MOE = R pi conditional on II pi
i=l i=l

The posterior cpd is not available in closed fcrm. How-

ever, it can be simulated easily on a high speed computer.

The modified Bayesian confidence intervals will then be

given by the appropriate percentage points in the simulated

posterior cpd of MOE.

f To simu±ate the posterior cpd of R, first generate

uniformly distribut(d random numbers, ri , between 0 and 1

and solve the equations

ri = Fi(pi;Xi,ni); i=l,...,N, (IV.9)

for pi" Call the solutions pi; i=l,...,N. This gives

random observations from the posterior distributions of
N

Pit (i=l,...,N). Form the product R* = *.
i=l

I
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Definition 4.2. The product R* H pN is a random
i=l

observation from the posterior cpd

of the MOE.

Continuing in the above manner, generate M observations

from the posterior cpd of the MOE, and denote them by

R*, R*,...,R*. Let PCj denote the jth percentile of the

R's, i.e., PC. is the value such that j% of the Rt's are
less than or equal to PC Clearly, if M is large enough,
the limits of the 80% modified Bayesian confidence interval

on R will be given approximately by PC10 and PC90* The

limits of the 90% modified Bayesian confidence interval on

R will be given approximately by PC5 and PC95 , etc.

A program was written in GE MK II Time-Sharing Fortran

for obtaining the modified Bayesian confidence intervals

and is available upon request.

The accuracy of the program yielding the modified

Bayesian intervals depends on M, the number of simulations,

and the accuracy of the internal computer function used to

solve the incomplete beta function. The accuracy of the

internal incomplete beta function available on our computer

is not too good. In extreme cases, agreement with tabled

values is to no more than 2 or 3 digits. This, coupled

with the numerical technijue used to fit the curve

Fi(pi;Xi.,ni) by a series of straight lines, did not yield

the 2 or 3 digit accuracy hoped for. however, so long as

M> 40/a, the end points of the 1-a confidence interval on

a single proportion (N=l) were within +.01 of the exact

confidence intervals appearing in reference (11). See,

for example, the figures ir Table IV.3.

39



I

J Table IV. 3

Confidence Intervals on p when X=l, n=5

Confidence Exact Confidence Modified Bayesian Intervals
(1-a) Limits

M=100 M=200 M=400 M=I000

80% (.02,.58) (.02,.57)I (.02,.56) (.02,.57) (.02,.58)

90% (.01,.66) (.010,.64) (.01,.66) (.01,.67) .01,.66)

95% (.005,.72) (.004,.74) (.003j.75) (.007,.73) (.0061,72)

} ]For the case N>2, all procedures known to the authors

for obtaining ordinary confidence intervals on the MOE

depend on asymptotic distribution theory and hence are

only approximate. For this reason, comparisons with the

modified Bayesian intervals are meaningful only in the

case of "large" ni's. With the exception of the last

column giving the modified Bayesian limits, the figures

in Table IV.4 appear in Harris (reference (7)). The

modified Bayesian limits are seen to be close to the

I approximate ordinary limits and in fact are between

Buehler's limit and Harris' limit for all but one seL of

the values of Xi and ni used.

40



a) rd c0

r40l >f C>~ H H
0rdi 0 0 0 0

orti'- 0) 0 )

-4U)C'q 0 H 1

.d~i 0 0
rd >12 0 0

Q) 0 fu 0 0
U) N L.o v' 0: co *

r r H wo N- N

P4 0 0)C 0 0>
'tie 00C 0 0a -

to)N r, Ln
0) - ru-I N' -qr

SrO 00r

0 --q r: C) 0 Cl H 0 lr
*,-a) CD a' H) 0A I

L) 0O 0

H . a)O~.~ 0 H.

pU4 0 0>

Ir 0) 0U k H ) C 00
H i 4-4 Q) 04 0 0 

1- 4)0 aa ) 0 0

3: Pi4 5 ~r-I 9 0C '0 C
E 1 1 H44 1U4 '(i' H H- H U

W~ ' 0 0l 0r r 0 I
0-l r44 0000J C

a) i :F~ 9o a) I' HC
Q4.i (w U u mP

Q r4 a)~-

4) l (U) EA .. 0 m -- C

P4 ~ 0 riri (, cl) C C) o P)
1-1 rA 4-H(U - H v o rI H U

04) 0H 0)r ) C
1111 P 0 0 0) 0

a) *L *> H*

0 0 )

fu 0 0

P 4-) r i C C C C -

U)(H C H 'J A 0 0

ro El) H H

H)U) C'J 0 00

> a)~ 0 0 0 l

(AC40 0 0 in
N H H- H- Hq

4]. ____%



If the ni's are large and the pi's are not close to

zero then Madansky's likelihood ratio method is satis-

factory. Table IV.5 contains one such example. Again,

there is good agreement between the Modified Bayesian

intervals and the ordinary intervals.

1
I

ITable IV.5

N
Approximate Confidence Limits for MCE = i P, Where

i=l1
p= Probability of Success at ith Component

4
11 Xi/ni = .156

i=1

xI = 34 n1 = 87

x2 = 27 n2 = 33

X3 = 23n 3 = 45

[ x4 = 21 n4 = 22

Confidence Madansky's Modified Modified
Level Likelihood Ratio Bayesian Bayesian

(M=100) M!=400)
80% .116, .203 .097, .209 .101, .204

90% .106, .218 .086, .218 .083, .223

95% .098, .231 .043, .260 .044, .234

4
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Unfortunately, numerical computations indicate that

the modified Bayesian procedure is also severely biased

Iif the pi's are close to one and the number of terms in
the product, N, is large. Thus, it is recommended that

Njthe product H (Xi+l)/(n.+2), be "close" to the product,

N
if (Xi/ni), before the modified Bayesian procedure is

japplied.

I

I
i
I

!
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4 V. A NOTE ON THE EFFECT OF "LATE STARTERS" ON THE
ESTIMATE OF CUMULATIVE DETECTION PROBABILITY

i Discussion

I In conducting the research for estimating confidence

intervals on cumulative detection probability (CDP) as a

Ifunction of range (see Chapter III of this paper), it

was discovered that the inclusion of "late starters" in

Jthe data base may produce a biased estimate of the desired
CDP. This bias is due to the fact that, in some cases,

jthe "late starters" have their own CDP curve which may be

significantly different from the CDP curve for "non-late

starters". The magnitude of the bias of an estimate of

CDP calculated from exercise data may be unknown.

I Theory

Let f(R) denote the cumulative detection probability

(CDP) at range R of targets whose starting ranges are

i beyond the (reasonable) limits of detection. It is

assumed that we desire to estimate the function f(R) for[ Iall R > 0. Let fs(R) denote the CDP at range R of targets
whose starting range is S, where S is less than the limits

of detection. For ease of presentation assume there are

I two groups of targets: first, N targets beyond the limits

of detection and then N1 targets start at range S1. See

J !Figure V.1.
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fs (R) II- f (s,)

CDP

f (R)

0R S, CIO

i Figure V.1

I

Consider the range "bin" (R*, S1 ) . Using the standard

j technique in reference (1), the value of(R*) can be

estimated by f(R*). The expected value of the estimate

I is

I E (f(R*)) 1 - (j l-R(V 1)
N N(1-f (SI1)) + N1

I
The right hand side of equation V.1 is not equal to f(R*)

for all possible values of the function fSl (R*), i.e., the

estimation procedure is biased at R* unless the function

fSl (R) is such that E(f(R*)) = f(R*). Setting the right

hand side of equation V.1 equal to f(R*) and solving for

fS1 (R*), we find that

f 1 (R*) = (f (R*) -f(S1))/(1-f(S1 (V.2)
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Equation V.2 is a necessary condition in order for the

standard estimate, f(R*), to be unbiased. If fSl (R*)

< (f(R*) - f(S1))/(l-f(Sl)) then f(R*) is too small (on

average) and if fSl (R*) > (f(R*) - f(S 1 ))/(l-f(SI))

then f(R*) is too large (on the average). The above

remarks point out the fact that, if "late starters"

have their own CDP curves then combining data from

"late starters" with "non-late starters" to estimate

the latter's CDP curve may produce biased results. The

magnitude of the bias in a complicated exercise will

be unknown.

To illustrate the above, two artificial. but intuitive

numerical examples follow. Assume that at range 6 miles

the true CDP is 25% and at range 5 miles the true CDP is

30%. Assume that for late starters at range 6 miles, the

probability is 25% that a target will be immediately

detected. After the immediate detections, assume the

CDP of the late starters follows the "true" CDP. See

Figure V.2.

S

LII

-. 4 • True CDP: f(R)
-..... CDP of late starters f6(R)
--- Expected estimate of

N-true CDPZ ?(R)
0

.30--

.25 - - - -. ..-- -.-- - -. .- - - --- '

4 5 6
MILES

Figure V.2
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jIn an exercise, ass.ume there are 20 targets whose

starting ranges are beyond the limits of detection and

j 20 targets which start at 6 miles. At a range "slightly"

more tha.i 6 Miles, say 6+, the standard formulas will

I yield an estimate of CDP whose expected value is

E(f(6 ) = 1 - (15/20) = .25.

In this example, the estimation technique is unbiased for

ranges qreater than 6 miles. At 6 miles, 5 of the late

starters will be detected immediately. In other words,

jwe expect 15 + 15 = 30 nondetections out of 15 + 20 = 35

opportunities. The updated estimate of CDP will have the

expected value

E(f(6)) = 1 - (15/20) (30/35)

= .357.

Thus, at range 6 miles, the estimation technique is biased

jby 10.7%. The "true" CDP is 25%, but on the average, the

estimate of the true CDP is 35.7%. In the range "bin" from

6 to 5 miles, we expect (.05) (20) = 1 detection from each

group of Largets. in other words, we expect 28 nondetections

out of 30 opportunities. The updated estimate of CDP will

have the expected value

I E(f(5)) = I - (.643) (28/30)

S=1- .6
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I The procedure is biased by 10% at range 5 miles.

{ For the second example, assume that the probability is

1.0 that a target will be detected within one mile of starting

j range if its starting range is less than 8 miles. Further,

assume that the probability of detection is uniform over this

unit interval, and that there is no chance of detection of!

targets at a range greater than 8 miles. CDP curves for 3

i starting ranges are sketched in Figure V.3.
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Figure V.3
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Consider an exercise in which we have 10 targets with

starting range greate- than 8 miles, 5 late starters at

7.5 miles and 5 late starters at 7 miles. The expected

CDP curve, a6 computed by the formulas in (reference (1)),

4appears in Figure V.4. For ranges less than 7.5 miles,
the estimates are too small (on the average).

II

.874--- ------

_7--Expected estimale
SI \of CDP.

6 6.5 7 7.5 8

MILES

Figure V.4

Recommendation

An obvious solution to this potential bias due to "late-

starters" is to eliminate all of them from the data base for

calculating cumulative detection probability. However, this

approach is not desirable since a significantly large portion

of the data may consist of "late-starters", in which case the

sample size would be drastically reduced. Thus, the analyst

must use his discretion in eliminating some "late-starters"

and retaining others.
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The following guidelines for eliminating "late-starters"

are recommended at this time:

1) All "late-starters" that are detected immediately (or

Ijust about immediately) after becoming a detection

opportunity should be removed from the data base,

since it is probable that they would have been detected

at a longer range had they been opportunities at a

longer range.

2) Al. "late-starters" that have a very short start range

should be eliminated. A start range is considered to

be very short if it is less than a large proportion of

jthe detection ranges. (e.g., start range less than

50% of the detection ranges.)

Additional research relative to the "late-starter" effect on

the distribution theory of cumulative detection probability

may result in the formulation of different rules.

I

I
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